Prerequisites

Before you begin, make sure you have Jupyter installed on your personal computer. Here’s how to do it:

Installation via Python

  1. Create a virtual environment:

$ python3 -m venv jupyter_test

  1. Activate the virtual environment:

$ source jupyter_test/bin/activate

  1. Install Jupyter Lab:

$ pip install jupyterlab

Note: If you are using Anaconda (version 2024.06), Jupyter is already included.


Accessing Jupyter on the Frontend ($HOME)

Part I: Starting a Job with a Jupyter Notebook Server on the vm-projet

Step 1: Log in to your account

Log in to your explor account using SSH:

$ ssh -p <port> login@193.54.9.82
login@193.54.9.82's password:

Step 2: Load the necessary modules

Load the necessary modules to run Jupyter on the vm-projet:

[login@vm-projet ~]$ module load anaconda3/2024.06
[login@vm-projet ~]$ source $HOME_ANACONDA/anaconda.rc
(base) [login@vm-projet ~]$

Step 3: Launch Jupyter Notebook

Launch Jupyter Notebook with the following command:

(base) [login@vm-projet ~]$ jupyter notebook --no-browser --port=8888 --ip=0.0.0.0

Example output:

[I 2025-03-06 10:52:44.630 ServerApp] Jupyter Server 2.14.1 is running at:
[I 2025-03-06 10:52:44.630 ServerApp] http://vm-projet:8888/tree?token=856bf559f7b34d11a5c87e4e755b7221d4757ef001bf94b6

Note the provided URL, as you will need it to connect to the server.

Part II: Opening a Notebook through an SSH Tunnel

Step 1: Open the SSH Tunnel

Open an SSH tunnel in a shell session on your workstation:

$ ssh -fNL 8888:localhost:8888 -p <port> login@193.54.9.82
login@193.54.9.82's password:
  • The first port (8888) corresponds to your local machine. You can adjust it if necessary.
  • The second port (8888) is that of the server, as specified when launching Jupyter Notebook on the vm-projet.

Step 2: Launch the Notebook

Activate your virtual environment and launch Jupyter:

$ source jupyter_test/bin/activate
(jupyter_test) user@work-station:~$ jupyter notebook

Step 3: Access the Notebook

In your browser, open the URL provided by the notebook server, replacing the vm-projet name with localhost:

Replace:

http://vm-projet:8888/tree?token=856bf559f7b34d11a5c87e4e755b7221d4757ef001bf94b6

With:

http://localhost:8888/tree?token=856bf559f7b34d11a5c87e4e755b7221d4757ef001bf94b6

You should now be connected to your Jupyter notebook running on the vm-projet.


Accessing Jupyter on Compute Nodes

Part I: Starting a Job with a Jupyter Notebook Server on a Compute Node

Step 1: Log in to your account

Log in to your explor account using SSH:

$ ssh -p <port> login@193.54.9.82
login@193.54.9.82's password:

Step 2: Request a Reservation

Request a reservation for an interactive connection to a node, for example for a GPU node:

[login@vm-projet ~]$ salloc -A projet -N1 -p gpu -w noeud -t 1:00:00 srun --pty bash

Example output:

salloc: Pending job allocation 1344365
salloc: job 1344365 has been allocated resources
salloc: Granted job allocation 1344365
salloc: Waiting for resource configuration
salloc: Nodes gpf01 are ready for job

Step 3: Load the necessary modules

Load the necessary modules to run Jupyter on the node:

[login@node ~]$ module load anaconda3/2024.06
[login@node ~]$ source $HOME_ANACONDA/anaconda.rc
(base) [login@node ~]$

Step 4: Launch Jupyter Notebook

Launch Jupyter Notebook with the following command:

(base) [login@node ~]$ jupyter notebook --no-browser --port=8888 --ip=0.0.0.0

Example output:

[I 2024-11-22 18:50:20.263 ServerApp] Jupyter Server 2.14.1 is running at:
[I 2024-11-22 18:50:20.263 ServerApp] http://node:8888/tree?token=0cd965475476ce5b0a5235c4f6fc5f0c82123eb0e8c5b354

Note the provided URL, as you will need it to connect to the server, as well as the name of the compute node.

Part II: Opening a Notebook through an SSH Tunnel

Step 1: Open the SSH Tunnel

Open an SSH tunnel in a shell session on your workstation:

$ ssh -fNL 8888:node:8888 -p <port> login@193.54.9.82
login@193.54.9.82's password:
  • The first port (8888) corresponds to your local machine. You can adjust it if necessary.
  • The second port (8888) is that of the server, as specified when launching Jupyter Notebook.

Step 2: Launch the Notebook

Activate your virtual environment and launch Jupyter Lab:

$ source jupyter_test/bin/activate
(jupyter_test) user@work-station:~$ jupyter notebook

Step 3: Access the Notebook

In your browser, open the URL provided by the notebook server, replacing the node name with localhost:

Replace:

http://node:8888/tree?token=0cd965475476ce5b0a5235c4f6fc5f0c82123eb0e8c5b354

With:

http://localhost:8888/tree?token=0cd965475476ce5b0a5235c4f6fc5f0c82123eb0e8c5b354

You should now be connected to your Jupyter notebook running on the compute node.